SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway.
نویسندگان
چکیده
Secreted protein acidic and rich in cysteine (SPARC) participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we show that adenoviral-mediated overexpression of SPARC cDNA (Ad-DsRed-SP) elevated the expression of the neuronal markers NeuN, nestin, neurofilament, and MAP-2 in medulloblastoma cells and induced neuron-like differentiation. SPARC overexpression decreased STAT3 phosphorylation; constitutive expression of STAT3 reversed SPARC-mediated expression of neuronal markers. We also show that Notch signaling is suppressed in the presence of SPARC, as well as the Notch effector basic helix-loop-helix (bHLH) transcription factor hairy and enhancer of split 1 (HES1). Notch signaling was found to be responsible for the decreased STAT3 phosphorylation in response to SPARC expression. Furthermore, expression of SPARC decreased the production of interleukin 6 (IL-6) and supplemented IL-6-abrogated, SPARC-mediated suppression of Notch signaling and expression of neuronal markers. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed increased immunoreactivity for the neuronal markers and a decrease in Notch1 expression and phosphorylation of STAT3. Taken together, our results suggest that SPARC induces expression of neuronal markers in medulloblastoma cells through its inhibitory effect on IL-6-regulated suppression of Notch pathway-mediated STAT3 signaling, thus giving further support to the potential use of SPARC as a therapeutic candidate for medulloblastoma treatment. Findings show that SPARC-induced neuronal differentiation can sensitize medulloblastoma cells for therapy.
منابع مشابه
Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملInhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells.
In this study, the potential influence of resveratrol (3,5,4'-trihydroxy-trans-stilbene) in signal transducer and activator of transcription 3 (STAT3) signaling of medulloblastoma cells was evaluated by checking the status of STAT3 signaling and its downstream gene expression in two medulloblastoma cell lines (UW228-2 and UW228-3) with and without resveratrol treatment. The results revealed tha...
متن کاملGinkgetin induces apoptosis in 786-O cell line via suppression of JAK2-STAT3 pathway
Objective(s): Renal cell carcinoma (RCC) is insensitive to conventional chemotherapy. Ginkgetin effectively treats several carcinoma cells. However, little is known about effects of Ginkgetin on RCC. In the present study, using 786-O cells, we evaluate whether Ginkgetin exerts anticancer effects against RCC. Materials and Methods: 786-O cells suspended in the medium containing Ginkgetin were c...
متن کاملInhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 71 14 شماره
صفحات -
تاریخ انتشار 2011